miércoles, 31 de agosto de 2011

Tarjeta de Expancion

Definicion...
Las tarjetas de expansión son dispositivos con diversos circuitos integrados, y controladores que, insertadas en sus correspondientes ranuras de expansión, sirven para ampliar las capacidades de un ordenador. Las tarjetas de expansión más comunes sirven para añadir memoria, controladoras de unidad de disco, controladoras de vídeo, puertos serie o paralelo y dispositivos de módem internos. Por lo general, se suelen utilizar indistintamente los términos «placa» y «tarjeta» para referirse a todas las tarjetas de expansión.
En la actualidad las tarjetas suelen ser de tipo PCI, PCI Express o AGP. Como ejemplo de tarjetas que ya no se utilizan tenemos la de tipo Bus ISA.
Gracias al avance en la tecnología USB y a la integración de audio, video o red en la placa base, hoy en día son menos imprescindibles para tener un PC completamente funcional.

la historia...
El primer microordenador en ofrecer un bus de tarjeta tipo ranura fue el Altair 8800, desarrollado en 1974-1975. Inicialmente, las implementaciones de este bus eran de marca registrada (como Apple II y Macintosh), pero en 1982 fabricantes de computadoras basadas en el Intel 8080/Zilog Z80 que ejecutaban CP/M ya habían adoptado el estándar S-100. IBM lanzó el bus XT, con el primer IBM PC en 1981; se llamaba entonces el bus PC, ya que el IBM XT, que utilizaba el mismo bus (con una leve excepción) no se lanzó hasta 1983. XT (también denominado ISA de 8 bits) fue reemplazado por ISA (también denominado ISA de 16 bits), conocido originalmente como el bus AT, en 1984. El bus MCA de IBM, desarrollado para el PS/2 en 1987, competía con ISA, pero cayó en desgracia debido a la aceptación general de ISA de parte de la industria, y la licencia cerrada que IBM mantenía sobre MCA. EISA, la versión extendida de 32 bits abogada por Compaq, era común en las placas base de los PC hasta 1997, cuando Microsoft lo declaró un «subsistema heredado» en el libro blanco industrial PC 97. VESA Local Bus, un bus de expansión al principio de los 1990 que estaba ligado intrínsecamente a la CPU 80486, se volvió obsoleto (además del procesador) cuando Intel lanzó la CPU Pentium en 1993.
El bus PCI se lanzó en 1991 para reemplazar a ISA. El estándar (ahora en la versión 3.0) se encuentra en las placas base de los PC aun hoy en día. Intel lanzó el bus AGP en 1997 como una solución dedicada de aceleración de video. Aunque se denominaba un bus, AGP admite una sola tarjeta a la vez. A partir de 2005, PCI Express ha estado reemplazando a PCI y a AGP. Este estándar, aprobado en 2004, implementa el protocolo lógico PCI a través de una interfaz de comunicación en serie.
Después del bus S-100, este artículo sólo menciona buses empleados en PCs compatibles con IBM/Windows-Intel. La mayoría de las otras líneas de computadoras que no eran compatibles con IBM, inclusive las de Tandy, Commodore, Amiga y Atari, ofrecían sus propios buses de expansión. Aun muchas consolas de videojuegos, tales como el Sega Genesis, incluían buses de expansión; al menos en el caso del Genesis, el bus de expansión era de marca registrada, y de hecho las ranuras de cartucho de la muchas consolas que usaban cartuchos (excepto el Atari 2600) calificarían como buses de expansión, ya que exponían las capacidades de lectura y escritura del bus interno del sistema. No obstante, los módulos de expansión conectados a esos interfaces, aunque eran funcionalmente iguales a las tarjetas de expansión, no son técnicamente tarjetas de expansión, debido a su forma física.
Para sus modelos 1000 EX y 1000 HX, Tandy Computer diseñó la interfaz de expansión PLUS, una adaptación de las tarjetas del bus XT con un factor de forma más pequeño. Porque es eléctricamente compatible con el bus XT (también denominado ISA de 8 bits o XT-ISA), un adaptador pasivo puede utilizarse para conectar tarjetas XT a un conector de expansión PLUS. Otra característica de tarjetas PLUS es que se pueden apilar. Otro bus que ofrecía módulos de expansión capaces de ser apilados era el bus «sidecar» empleado por el IBM PCjr. Éste pudo haber sido eléctricamente igual o similar al bus XT; seguramente poseía algunas similitudes ya que ambos esencialmente exponían los buses de dirección y de datos de la CPU 8088, con búferes y preservación de estado, la adición de interrupciones y DMA proveídos por chips complementarios de Intel, y algunas líneas de detección de fallos (corriente idónea, comprobación de Memoria, comprobación de Memoria E/S). Otra vez, PCjr sidecars no son técnicamente tarjetas de expansión, sino módulos de expansión, con la única diferencia siendo que el sidecar es una tarjeta de memoria envuelta en una caja de plástico (con agujeros que exponen los conectores).

los tipos...



  • Capturadora de televisión





  • Módem interno





  • Tarjeta gráfica





  • Tarjeta de red





  • Tarjeta de sonido
  • Memoria RAM

    Definicion:
    Memoria RAM es un sistema de almacenamiento de datos. RAM significa Random Access Memory, Memoria de Acceso Aleatorio, y esta nomenclatura se debe al hecho de que el sistema accede a datos almacenados de forma no secuencial, a diferencia de otros tipos de memoria. La memoria RAM es volátil, esto quiere decir que no graba de modo permanente los datos contenidos. Cuando la alimentación del sistema es cortada, todo lo que estaba en la memoria se pierde.
    MemoriaEl sistema es bastante útil para el procesamiento de datos, ya que proporciona espacio para informaciones cruciales, que pueden ser accedidas de forma casi inmediata, a diferencia de otras formas de almacenamiento, como discos duro, CDs o DVDs. El sistema operativo, así como aplicaciones de datos en uso son almacenados en la memoria RAM, permitiendo que el procesador trabaje estas informaciones rápidamente.
    Para la ejecución de juegos, por ejemplo, una buena cantidad de memoria RAM de alta calidad es esencial, ya que en este tipo de aplicación los archivos son accedidos a todo momento, para que sean cargados texturas, modelos, animaciones y otros tipos de datos exhibidos continuamente. Si el procesador depende de acceso al disco duro o a otro tipo de almacenamiento, la velocidad y agilidad características de un juego pueden ser comprometidas.
    Vale la pena destacar que no todos los tipos de memoria RAM proporcionan el mismo nivel de desempeño. Existen diversos modelos con frecuencias diferentes y capacidades de transferencia de datos cada vez mayores. Verifica debajo una comparación entre tres modelos de RAM con frecuencia de clock de 200Mhz, y nota como el desempeño se duplica con cada versión del hardware.
    la historia...
    La memoria RAM es indispensable para cualquier tipo de usuario, desde aquellos que tienen interés en juegos hasta los que utilizan procesadores de texto más pesados. El acceso de datos directamente en el disco duro no trae agilidad, la cual es necesaria en la mayor parte de las aplicaciones utilizadas actualmente, y el hecho de que una memoria no es un componente caro garantiza que todo usuario debe intentar mantener su sistema actualizado en este aspecto.
    Como veis, su visión del crecimiento desorbitado de la informática no fue muy acertada. Hoy día, lo normal es instalar entre 512 y 1024 Megabytes (1 Gigabyte), casi seiscientas veces más. Pero veamos, hay que excusar al chico. Por aquel entonces los sistemas operativos no usaban demasiados gráficos (excepto los visionarios y mal vendidos en España Macintosh, que ya utilizaban un sistema parecido al Windows en los 70), con lo que 640k (0.6 Megas) para alojar todo el núcleo del sistema era suficiente. En realidad, para lo que es el núcleo del sistema operativo, y sólo el núcleo, nada de herramientas, 640k de RAM era aceptable. Con la capacidad de los programas y sistemas de devorar cada vez más recursos, los 640k se hicieron insuficientes enseguida, por ejemplo para usar el Windows 3.1. Esto produjo todo un maremágnum de confusión motivado por la voluntad de mantener la compatibilidad hacia abajo (que todos los programas anteriores pudiesen ser ejecutados en ordenadores modernos) y realizar verdaderos malabares con la memoria (memoria extendida, expandida, memoria base...) afortunadamente, con Windows 2000 y XP, se abandonó la base MS-DOS y con ella, esta anticuada filosofía (aunque muchos antiguos programas, aún pudiesen ser ejecutados). Windows 95 no era más que una bonita interfaz gráfica que ocultaba un MS-DOS interno.

    También hay que tener en cuenta que nuestro amigo Bill tenía y tiene un acuerdo con Intel, en el que Microsoft programa aplicaciones que absorben cada vez más CPU y así Intel puede sacar cada 18 meses un procesador más potente y tiene asegurada la clientela que use Windows. Por eso, la mayoría de las veces, los recursos que toman los sistemas Windows son injustificados, no son más que una argucia para que Intel dé salida a sus procesadores más potentes a personas que realmente no los necesitan (por supuesto que existen profesionales con la demanda de procesadores de alta gama, pero para un usuario medio que no le guste demasiado jugar ni sea profesional, 3 Ghz es una bestialidad y sólo sirve para que Windows XP campe a sus anchas, para ellos, se podrían reciclar viejos sistemas con Linux).
    Memoria RAM

    Volvamos a la memoria. Random Access Memory (Memoria de acceso aleatorio). Lo de aleatorio no viene de que se acceda sin orden ni concierto a la información que le venga en gana. Aleatorio significa que puede acceder a cualquier dato almacenado en ella con la misma velocidad. En los discos duros, el lugar físico donde se encuentre la información (ya sea más cerca del centro del disco o más hacia los bordes) influye en el tiempo que tarda el brazo mecánico en tomar esos datos. En el caso de la RAM, esta memoria está constituida como una malla entrelazada en la que cada celda contiene un estado (los ya consabidos "0" o "1", cargado o no cargado, señal eléctrica o ausencia de señal). Los datos son accesibles por coordenadas que identifican cada fila y cada columna. Para acceder a un rango concreto (por ejemplo toda una fila), sólo hay que indicar la coordenada "Y", y obtendremos el conjunto de bytes que están alojados en ella, con lo que el procesador podrá empezar a trabajar. El proceso es el siguiente: El usuario ejecuta una aplicación en el disco duro (demasiado lento para trabajar con él), esta viaja por el bus hacia la memoria RAM (que posee la velocidad adecuada para trabajar rápidamente con datos), aquí se mantiene de forma volátil hasta que el usuario almacena la información, que vuelve a pasar al disco duro. Todo esto es controlado por el microprocesador y los chips de la placa. Así de "simple" es la estructura básica de la computación.

    Hagamos un poco de historia

    ENIAC, considerado el primer ordenador de la Historia, poseía unos increíbles 4 kilobytes de memoria, fabricados a base de núcleos de ferrita a gran temperatura. Estos 4 kilobytes (si cada carácter en un documento ocupara un byte, el ordenador podría almacenar poco más que un folio escrito de información) ocupaban varios metros cuadrados, como cuatro armarios juntos.

    En los sesenta, cuando se comienza a utilizar los chips gracias a los circuitos integrados, se da un gran paso adelante, y los procesadores comienzan a doblar su capacidad cada año y medio. No así la RAM que debe esperar unos diez años para duplicar su velocidad. En los ochenta, el micro sigue evolucionando a velocidades sorprendentes (se llega al Megaherzio) y la velocidad de acceso a RAM sigue estancada hasta quedarse por detrás del micro. Surge el concepto de multiplicador para poder seguir al micro, y a la vez todo el sistema debe acoplarse a la velocidad del bus, que, para entendernos, es la carretera que une el procesador con la RAM. El bus siempre ha viajado a una velocidad menor que el procesador y la RAM, y esto ha generado infinidad de trucos y mejoras para poder crear un sistema sin cuellos de botella... Unos ejemplos:

    Existen dos tipos básicos de memoria RAM, la estática (SRAM) y la dinámica (DRAM). La primera no necesita ser tan frecuentemente "refrescada" con la información, lo que la hace más rápida. Se usa para las cachés internas de los microprocesadores (que no necesitan pasar por el bus), mientras que la dinámica se utiliza para lo que comúnmente conocemos como RAM del ordenador. SDRAM, viene de DRAM síncrona, y es un tipo genérico de memoria optimizada para trabajar a la velocidad del bus. ¿Confundidos? Aún ni hemos empezado.

    Según el formato e interacción con la placa...

    En un principio se usaron memorias DIP (Dual In line Pin) hasta los procesadores 80386, que soportaban poco más de 1 Megabyte de memoria. Eran una especie de cucaracha rectangular con 16 patas. Con el tiempo este formato pasó a usarse para la memoria de la tarjeta gráfica, pero con el aumento de ésta, el tipo de conexión terminó despareciendo.
    Módulo de placa base

    A mediados de los 90, aparecieron los formatos DIMM, SIMM (dual/single in line memory module) que eran módulos dispuestos en una lámina que se unía a la placa a través de una serie de contactos. Visualmente, estos dos tipos de módulos eran muy parecidos, pero para conectarse a la placa, necesitaban de técnicas distintas. Estos módulos podían ser a su vez de 30 contactos (SIMM30), muy al principio. Con la aparición del 486 y hasta las primeras versiones de Pentium II, se aumentó a 72 contactos. La evolución llegó con los módulos DIMM de 168 contactos, más rápidos que los anteriores, que se mantuvo hasta que el bus de datos consiguió disparar su velocidad.

    La mayoría de los equipos personales que se instalan actualmente, vienen equipados con memoria del tipo DDR SDRAM (double data rate SDRAM) que consigue doblar la velocidad actuando casi dos veces por ciclo de la placa, ajustándose más a la disparatada velocidad de los microprocesadores de hoy en día, y doblando velocidad de acceso de un plumazo cuando comenzaron a comercializarse.

    Para seguir con detenimiento la historia de la RAM y sus posibilidades, acrónimos y vertientes, se necesitaría un libro entero (que los hay). Pero con estas pinceladas, podemos, al menos, hablar con cierta propiedad sobre un componente muy importante de nuestro sistema.

    las funciones

    Prosesador

    El procesador (CPU, por Central Processing Unit o Unidad Central de Procesamiento), es por decirlo de alguna manera, el cerebro del ordenador. Permite el procesamiento de información numérica, es decir, información ingresada en formato binario, así como la ejecución de instrucciones almacenadas en la memoria.
    El primer microprocesador (Intel 4004) se inventó en 1971. Era un dispositivo de cálculo de 4 bits, con una velocidad de 108 kHz. Desde entonces, la potencia de los microprocesadores ha aumentado de manera exponencial. ¿Qué son exactamente esas pequeñas piezas de silicona que hacen funcionar un ordenador?
    Procesador Intel 4004

    Funcionamiento

    El procesador (denominado CPU, por Central Processing Unit) es un circuito electrónico que funciona a la velocidad de un reloj interno, gracias a un cristal de cuarzo que, sometido a una corriente eléctrica, envía pulsos, denominados "picos". La velocidad de reloj (también denominada ciclo), corresponde al número de pulsos por segundo, expresados en Hertz (Hz). De este modo, un ordenador de 200 MHz posee un reloj que envía 200.000.000 pulsos por segundo. Por lo general, la frecuencia de reloj es un múltiplo de la frecuencia del sistema (FSB, Front-Side Bus o Bus de la Parte Frontal), es decir, un múltiplo de la frecuencia de la placa madre.
    Con cada pico de reloj, el procesador ejecuta una acción que corresponde a su vez a una instrucción o bien a una parte de ella. La medida CPI (Cycles Per Instruction o Ciclos por Instrucción) representa el número promedio de ciclos de reloj necesarios para que el microprocesador ejecute una instrucción. En consecuencia, la potencia del microprocesador puede caracterizarse por el número de instrucciones por segundo que es capaz de procesar. Los MIPS (millions of instructions per second o millones de instrucciones por segundo) son las unidades que se utilizan, y corresponden a la frecuencia del procesador dividida por el número de CPI.
    Historia

    El primer procesador comercial, el Intel 4004, fue presentado el 15 de noviembre de 1971. Los diseñadores fueron Ted Hoff y Federico Faggin de Intel, y Masatoshi Shima de Busicom (más tarde ZiLOG).

    Los microprocesadores modernos están integrados por millones de transistores y otros componentes empaquetados en una cápsula cuyo tamaño varía según las necesidades de las aplicaciones a las que van dirigidas, y que van desde el tamaño de un grano de lenteja hasta el de casi una galleta. Las partes lógicas que componen un microprocesador son, entre otras: unidad aritmético-lógica, registros de almacenamiento, unidad de control, Unidad de ejecución, memoria caché y buses de datos control y dirección.

    Existen una serie de fabricantes de microprocesadores, como IBM, Intel, Zilog, Motorola, Cyrix y AMD. A lo largo de la historia y desde su desarrollo inicial, los microprocesadores han mejorado enormemente su capacidad, desde los viejos Intel 8080, Zilog Z80 o Motorola 6809, hasta los recientes Intel Core 2 Duo, Intel Core 2 Quad, Intel Xeon, Intel Itanium II, Transmeta Efficeon o Cell.

    Ahora los nuevos microprocesadores pueden tratar instrucciones de hasta 256 bits, habiendo pasado por los de 128, 64, 32, 16, 8 y 4 bits. Desde la aparición de los primeros computadores en los años cuarenta del siglo XX,


    Antecedentes
    Entre estas evoluciones podemos destacar estos hitos:

    •ENIAC (Electronic Numeric Integrator And Calculator) Fue un computador con procesador multiciclo de programación cableada, esto es, la memoria contenía sólo los datos y no los programas. ENIAC fue el primer computador, que funcionaba según una técnica a la que posteriormente se dio el nombre de monociclo.

    •EDVAC (Electronic Discrete Variable Automatic Computer) fue la primera máquina de Von Neumann, esto es, la primera máquina que contiene datos y programas en la misma memoria. Fue el primer procesador multiciclo.

    •El IBM 7030 (apodado Stretch) fue el primer computador con procesador segmentado. La segmentación siempre ha sido fundamental en Arquitectura de Computadores desde entonces.

    •El IBM 360/91 supuso grandes avances en la arquitectura segmentada, introduciendo la detección dinámica de riesgos de memoria, la anticipación generalizada y las estaciones de reserva.

    •El CDC 6600 fue otro importante computador de microprocesador segmentado, al que se considera el primer supercomputador.

    •El último gran hito de la Arquitectura de Computadores fue la segmentación superescalar, propuesta por John Cocke, que consiste en ejecutar muchas instrucciones a la vez en el mismo microprocesador. Los primeros procesadores superescalares fueron los IBM Power-1.

    viernes, 26 de agosto de 2011

    Mycro 1
    En 1975 se fabrica la primera microcomputadora "de tarjeta única" en Oslo, Noruega en una empresa llamada Norsk Data Industri. Contaba con un microprocesador Intel 8080 y utilizaba el sistema operativo MYCROP, creado por la misma empresa.

    Esta computadora fue sucedida por la Mycron 3, que ya utilizaba CP/M; la Mycron 1000 que contaba con un microprocesador Zilog Z80 y utilizaba MP/M; y finalmente en 1980 llega al mercado la Mycron 2000, que fue la primera en albergar un microprocesador Intel 8086, y utilizaba inicialmente el sistema operativo CP/M-86 y eventualmente el MP/M-86.

    KIM-1
    En 1976 MOS Technology presenta la computadora en una sola tarjeta KIM-1. Cuenta con un microprocesador 6501/02* a 1 MHz; 1 kilobyte en RAM, ROM, teclado hexagecimal, pantalla numérica con LEDs, 15 puertos bidireccionales de entrada / salida y una interfaz para casete compacto (casete de audio). Esta computadora fue vendida armada, aunque carecía de fuente de poder.

    La KIM-1 fue producida hasta 1981, convirtiéndose en el primer producto de cómputo de Cómmodore.

    XT
    En 1981 IBM lanzó al mercado la primera computadora personal comercialmente exitosa, la IBM 5150, desde entonces el paso de la evolución que ha llevado este mundo de la Informática, ha sido vertiginoso, siempre buscando mayor velocidad y capacidad, al mismo tiempo que se reducían los costes de fabricación y por ende, los precios.

    Con la aparición del primer PC, sale al mercado la primera placa base estándar, la XT, que fuera substituida en poco tiempo, en 1984, apareciendo la AT, que son las siglas en inglés para Tecnología Avanzada, Advanced Technology. Cuyo estándar y configuración siguió vigente hasta principios del presente siglo(XXI), comenzando su declinación en el 2000, frente al exitoso estándar ATX. Las diferencias principales entre estos dos estándares es la arquitectura, ya que el XT posee una arquitectura a 8 bits, mientras que el AT llega a los 16.

    Estas tarjetas usualmente están equipadas con 8 ranuras ISA de 8 bits, 4 hileras de 9 zócalos para expandir la memoria pastilla por pastilla y una hilera por vez, para un total máximo de 1 megabyte en RAM.

    En cuanto a la memoria, esta consta de 4 hileras de 9 zócalos que daban cabida a 1 megabyte en total. Cada hilera recibe 9 pastillas de 32 kilobytes, utilizando una de ellas para paridad y únicamente funcionaba si toda la hilera estaba con sus circuitos correctamente insertados. Todavía no se inventaban las tarjetas de ampliación de memoria.

    De línea tenía cuando menos 3 ranuras ISA utilizadas, una para el controlador de disco duro, otra para la controladora de disquete y otra más para el controlador de video que habitualmente contaba también con un conector centronics para la impresora. Algunos modelos incorporaban una cuarta tarjeta para el puerto serial.

    Estas tarjetas, en su versión básica, únicamente contaban con microprocesador, el zócalo para el coprocesador matemático, que era un circuito independiente; zócalos para la ampliación de memoria, un conector DIN 5 para el teclado, las ranuras ISA de 8 bits, un conector de alimentación y la circuitería y pastillería necesaria para el funcionamiento de la computadora y carecía de funcionalidad útil por sí misma, sin tarjetas de expansión.

    AT
    El AT, basado en el estándar IBM PC-AT, fue estándar absoluto durante años, desde los primeros microprocesadores Intel 80286 hasta los primeros Pentium II y equivalentes incluidos.

    Estas tarjetas madre, en sus primeras versiones son de diseño y características elementales; carecen de accesorios integrados limitándose únicamente a los circuitos, componentes y pastillas básicos para su funcionamiento, al igual que las XT.

    Usualmente cuentan únicamente con un conector del teclado DIN de tipo ancho, así como algunas ranuras tipo ISA de 8 y / o 16 bits y en el caso de los modelos más recientes, algunas EISA, VESA y PCI en las que se tenían que insertar las tarjetas de expansión para controlar discos duros, puertos, sonido, etc.

    Durante este período casi todos los accesorios para computadora venían acompañados de una tarjeta controladora que había que instalar y configurar manualmente, ya que la tecnología de estas tarjetas madre no aportaba funciones para conectar y funcionar (Plug & Play), lo que hacía que la instalación, o al menos la configuración de estos dispositivos tuviera que ser realizada por personal calificado que supiera lidiar con los limitados recursos que ofrecía la placa base.

    Estas carencias y limitaciones son las que motivaron que eventualmente se crearan tecnologías de conectar y funcionar así como buses externos de alta velocidad, como lo son el USB o el IEEE1394, para dar cabida a la creciente disponibilidad de accesorios y demanda de recursos.

    Las últimas generaciones de tarjetas madre tipo AT llegaron al mercado integrando la circuitería de control para 4 discos duros, 2 platinas de disquete, sonido de 8 y hasta 128 bits, 2 puertos seriales y 1 paralelo, al menos 2 conectores USB, puerto de video AGP a 64 bits con memoria de video compartida con la RAM del sistema configurable desde 4 hasta 64 megabytes, así como módem a 56Kbps y red ethernet a 10/100 megabits; con lo cual la mayoría de estos modelos ya no requerían de tarjetas de expansión para funcionar a toda su capacidad saliendo de la caja, ya que inclusive algunas traían montado el microprocesador y únicamente se equipaban con una ranura PCI y/o una ISA.



    ATX y variantes

    El formato ATX, promovido por INTEL e introducido al mercado en 1996 comenzó su historia con una serie de debates sobre su utilidad debido principalmente al requerimiento de nuevos diseños de fuente de poder y gabinete.

    El cumplimiento de los estándares ATX permite la colocación de la UCP de forma que no moleste en el posicionamiento de las tarjetas de expansión, por largas que estas sean y está colocada al lado de la fuente de alimentación para recibir aire fresco del ventilador de esta. Se descubren exteriormente porque tiene más conectores, los cuales están agrupados y los conectores de teclado y ratón son tipo PS/2.

    Para 1997, con la llegada al mercado del AGP y el USB, estas tecnologías se incorporaron rápidamente en este estándar.

    Debido las amplias características del ATX salieron al mercado diversas alternativas basadas en el mismo estándar, como el micro ATX, que es una versión reducida en tamaño, y el mini ITX, una versión todavía más compacta y de características de expansión limitadas.

    Otros formatos relativamente comunes basados en el estándar ATX son el LPX y el NLX. El LPX es de tamaño similar a las Baby AT con la particularidad de que las ranuras para las tarjetas se encuentran fuera de la placa base, en un conector especial quedando paralelas a la placa base. El NLX se sujeta a la carcasa mediante un mecanismo de fácil apertura, que permite un cambio rápido de la placa. También sus ranuras de expansión están dispuestas en una placa independiente conectada a la placa base.



    Tarjeta madre Micro ATX para slot 1

    Otra clasificación que se puede hacer de las placas base es atendiendo al zócalo donde va colocado el procesador, pudiendo ser socket 4 o 5 para los primeros Pentium, también conocidos como Pentium Clasico, socket 7 para Pentium MMX, AMD K-6, Cyrix, el socket super7 igual que el anterior pero con bus de 100 Mhz, el socket 8 para Pentium PRO, el slot Uno para la familia del Pentium II y los primeros Pentium III, el slot 2 para el Xeon. Otra característica que diferencia las placas base es la circuitería, también conocida como Chipset, que es el conjunto de circuitos integrados o pastillas que se encargan de enlazar y gestionar los distintos buses de datos que hay en la placa base. La calidad de la circuitería condiciona la de la tarjeta madre y normalmente le da el nombre.

    El primer conjunto de pastillas que se introdujo con el procesador Pentium y se denominaba tipo VX, al que le fueron sucediendo distintos modelos según iban apareciendo nuevos procesadores Pentium. Los de 440 de Intel, en su placa 440 LX, fue la primera con una velocidad frontal de 66MHz, y el 440 BX con una velocidad de 100 Mhz. También existen 440 GX y 450 NX para procesador XEON

    Tarjeta Madre

    ¿QUE ES TARJETA MADRE?
         La tarjeta madre es el componente principal de un computador personal. Debido a que todos los demás grupos de componentes y dispositivos periféricos son controlados a través de la misma.
    ¿CUALES SON SUS CARACTERISTICAS?
        - Cada procesador tiene el tipo de tarjeta madre que le sirve (Aunque algunos comparten
              el mismo tipo) traen incorporados los puertos seriales (Ratón, Scanner, etc ), los paralelos
              (Impresora) y la entrada de teclado.
                    Otro dato importante sobre la tarjeta madre es
               - La cantidad y tipo de ranuras que tiene para las tarjetas de expansión y para la memoria
               RAM. Es importante que traiga las ranuras estandar de expansión EISA, PCI.
    COMPONENTES...
    El Bus:
              Es el que envía la información entre las     tarjet5.jpg (25080 bytes)PCI, EISA y los nuevos estándares: AGP para tarjetas de vídeo y el Universal Serial Bus USB (Bus serial universal).  componentes externos al PC. AGP, PCI y EISA
    partes del computador de casi todos los
    computadores que vienen hoy en día es




      Son los tres tipos de ranuras compatibles con las tarjetas madre para la conexión con


    El socket:
    La tarjeta principal viene con un zócalo de tarjet6.jpg (16779 bytes)CPU del tipo ZIF (zero insertion force) que permite insertarla CPU sin presión alguna.   * Levante la palanca del zócalo.        zócalo.



        * Inserte la CPU y asegúrese con el pin 1 del

     * Baje la palanca del zócalo.


    miércoles, 24 de agosto de 2011

    Monitor

    Definicion: El monitor de computadora o pantalla de ordenador, aunque también es común llamarlo «pantalla», es un dispositivo de salida que, mediante una interfaz, muestra los resultados del procesamiento de una computadora.

    Caracteristicas: Nuevo Modelo de Monitores LCD 740N de la marca Samsung, con mayores funciones y prestaciones que los anteriores 710N y 713N Características Monitor LCD TFT de 17” de interfaz analógica
    Resolución máxima de 1280x1024 píxeles Brillo de 300 cd/m² y contraste de 700:1 MagicColor: Imágenes vívidas y bien definidas MagicBright²: Cinco modos de brillo predeterminados (Juegos, Película, Deportes, Internet y Texto) MagicSpeed²: Tiempo de respuesta de 8 ms MagicTune: Calibración adecuada de la pantalla mediante al uso del mouse
    Conector D-sub Amplitud visual de 150° horizontal / 135º vertical Fuente de alimentación incorporada.

    Tipos de monitores: TRC,PLASMA,ALIS,LCD,FDE,CRT,TFT,DISPLAY DE LED,DISPLAY DE LEP Y DLP.

    La Historia de los Monitores:
    Los primeros monitores surgieron en el año 1981, siguiendo el estándar MDA (Monochrome Display Adapter) eran monitores monocromáticos (de un solo color) de IBM. Estaban expresamente diseñados para modo texto y soportaban subrayado, negrita, cursiva, normal, e invisibilidad para textos. Poco después y en el mismo año salieron los monitores CGA (Color Graphics Adapter-graficos adaptados a color) fueron comercializados en 1981 al desarrollarse la primera tarjeta gráfica a partir del estándar CGA de IBM. Al comercializarse a la vez que los MDA los usuarios de PC optaban por comprar el monitor monocromático por su costo.
    Tres años más tarde surgió el monitor EGA (Enhanced Graphics Adapter - adaptador de graficos mejorados) estándar desarrollado por IBM para la visualización de gráficos, este monitor aportaba más colores (16) y una mayor resolución. En 1987 surgió el estándar VGA (Video Graphics Array - graficos de video arreglados) fue un estándar muy acogido y dos años más tarde se mejoró y rediseñó para solucionar ciertos problemas que surgieron, desarrollando así SVGA (Super VGA), que también aumentaba colores y resoluciones, para este nuevo estándar se desarrollaron tarjetas gráficas de fabricantes hasta el día de hoy conocidos como S3 Graphics, NVIDIA o ATI entre otros.
    Con este último estándar surgieron los monitores CRT que hasta no hace mucho seguían estando en la mayoría de hogares donde había un ordenador.

    Componentes de los Monitores:
    Los monitores CRT usan las señales de vídeo analógico roja, verde y azul en intensidades variables para generar colores en el espacio de color RGB. Éstos han usado prácticamente de forma exclusiva escaneo progresivo desde mediados de la década de los 80.
    Mientras muchos de los primeros monitores de plasma y cristal líquido tenían exclusivamente conexiones analógicas, todas las señales de estos monitores atraviesan una sección completamente digital antes de la visualización.
    Los estándares más conocidos de vídeo analógico son VGA,SVGA éste último desarrollado Video Electronics Standards Association (VESA), soportan resoluciones de 800x600 píxeles y 36 bits de profundidad de color siguiendo la codificación RGB, siguiendo la especificación VESA cuyo estándar es abierto.
    Mientras que conectores similares (13W3, BNC, etc…) se fueron usando en otras plataformas, el IBM PC y los sistemas compatibles se estandarizaron en el conector VGA.
    Todos estos estándares fueron diseñados para dispositivos CRT (tubo de rayos catódicos o tubo catódico). La fuente varía su tensión de salida con cada línea que emite para representar el brillo deseado. En una pantalla CRT, esto se usa para asignar al rayo la intensidad adecuada mientras éste se va desplazando por la pantalla.